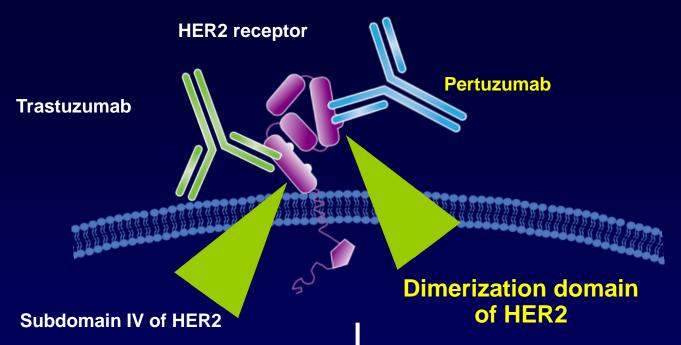
Challenges and Success: Treatment of Metastatic Breast Cancer 2012

Hope S. Rugo

University of California San Francisco
Helen Diller Family Comprehensive
Cancer Center

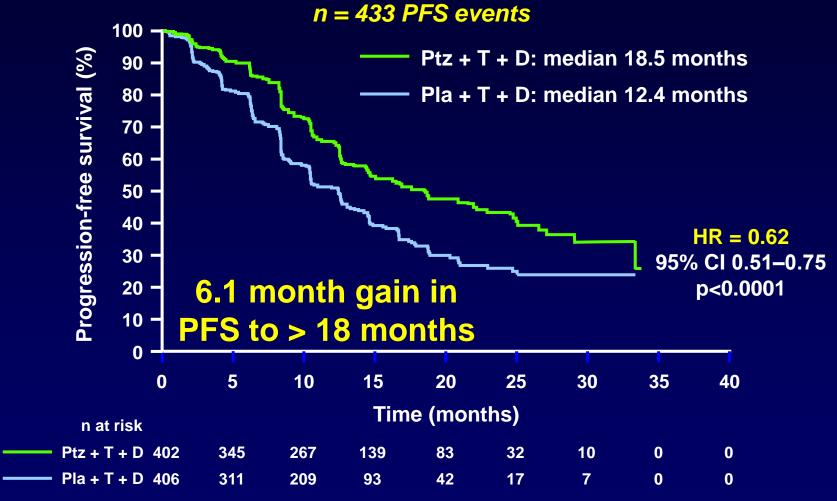

2012: What's New?

- HER2+ disease
 - A wealth of riches
- Reversing hormone resistance
- New treatments for triple negative disease
- The future
 - Moving forward from intrinsic subtypes
 - Consensus building

HER2 Positive MBC

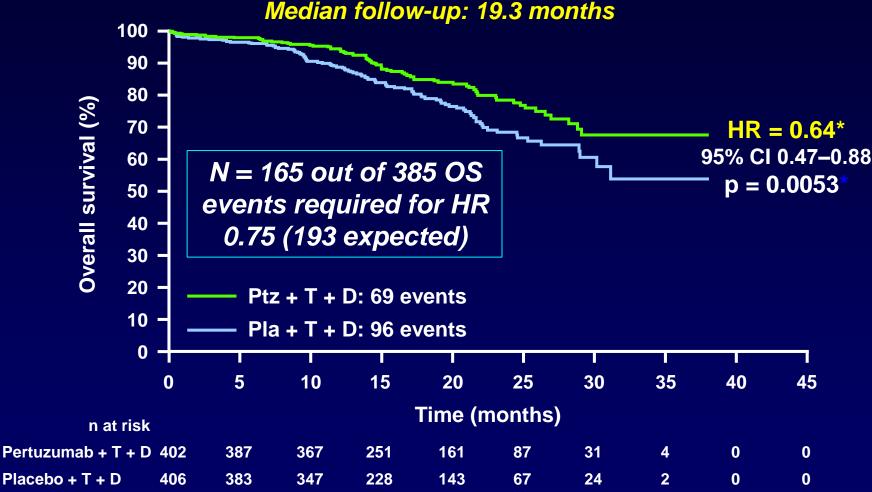
- The problem
 - Despite high response rates, almost all patients eventually develop progressive disease in viscera or brain
- Can we improve up-front therapy?
 - Combined signal blockade
- Current standards
 - Continue HER2 directed therapy through progression
 - Capecitabine + lapatinib > capecitabine (Geyer et al)
 - Capecitabine + trastuzumab > capecitabine (von Minckwitz et al)
 - Lapatinib + trastuzumab > lapatinib (Blackwell et al)

Trastuzumab and Pertuzumab Bind to Different Regions on HER2 and Have Synergistic Activity


- Trastuzumab continually suppresses HER2 activity
- Flags cells for destruction by the immune system
 - Activates ADCC

- Pertuzumab inhibits HER2 forming dimer pairs
- Suppresses multiple HER signaling pathways
- Flags cells for destruction by the immune system
 - Activates ADCC

Cleopatra: Study Design and Patients


- Double-blind, placebo controlled phase III trial
 - Docetaxel 75 mg/m² escalated to 100 as tolerated, about 6 cycles
 - Trastuzumab and pertuzumab/placebo q 3 weeks
- Primary endpoint
 - Independently assessed PFS
- 808 patients with treatment naïve centrally confirmed HER2+ MBC
 - Adjuvant therapy
 - >53% no prior chemo
 - > 10% prior trastuzumab
 - >49% ER+, 24% received endocrine therapy

Primary Endpoint: Independently Assessed PFS

Stratified by prior treatment status and region

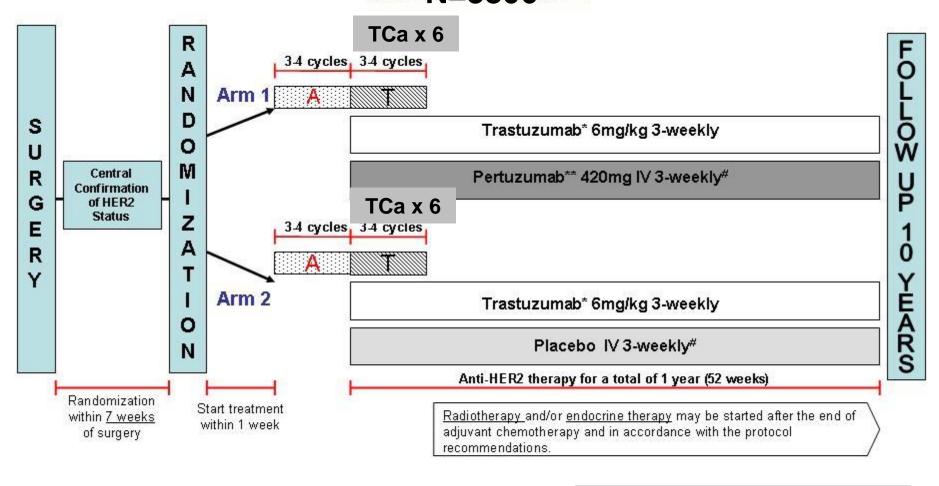
Overall Survival: Predefined Interim Analysis

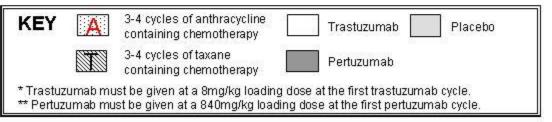
^{*} The interim OS analysis did not cross the pre-specified O'Brien-Fleming stopping boundary (HR ≤0.603; p ≤0.0012)

D, docetaxel; OS, overall survival; Pla, placebo; Ptz, pertuzumab; T, trastuzumab

Additional Data/Conclusions

- PFS benefit seen in essentially all predefined subsets
- Complete responses rare at 4 to 5.5% (partial response 65 to 75%) suggests presence of alternate resistance pathways
- Minimal additional toxicity with pertuzumab
- Survival impact is practice changing
 - > Approved 6/2012 in the US

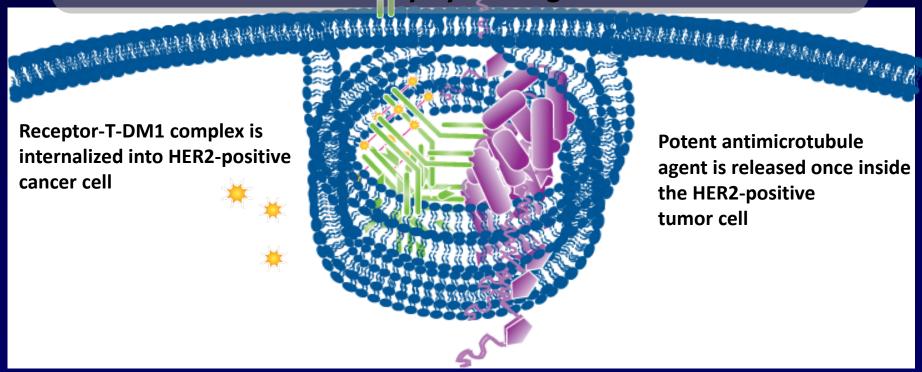

Historical Timeline: First-Line Treatment of HER2+ Disease –


	Slamon ¹ N=469*		Marty ² N=186		Cleopatra ³ N=808		Averel ⁴ N=424	
	-Tr	+Tr	-Tr	+Tr	-P	+P	-B	+B
PFS/TTP (mo)	4.6	7.3	6.1	11.7	12.4	18.5	13.7	16.5
OS (mo)	20	26	23	31	NR @ med FU 19.3 mo		38.3	38.5

Slamon: q 3 wk paclitaxel or AC, all others q 3 week docetaxel

^{*} FISH + subset

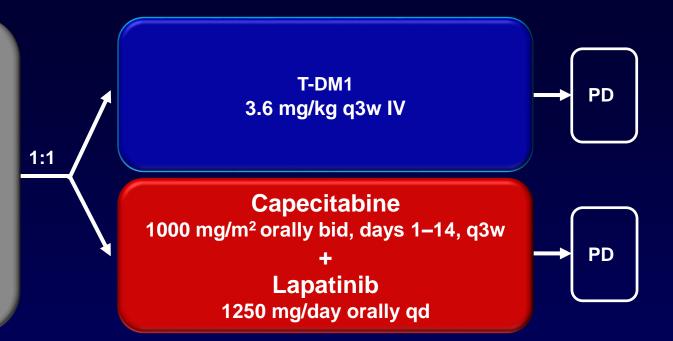
APHINITY ADJUVANT TRIAL N=3806



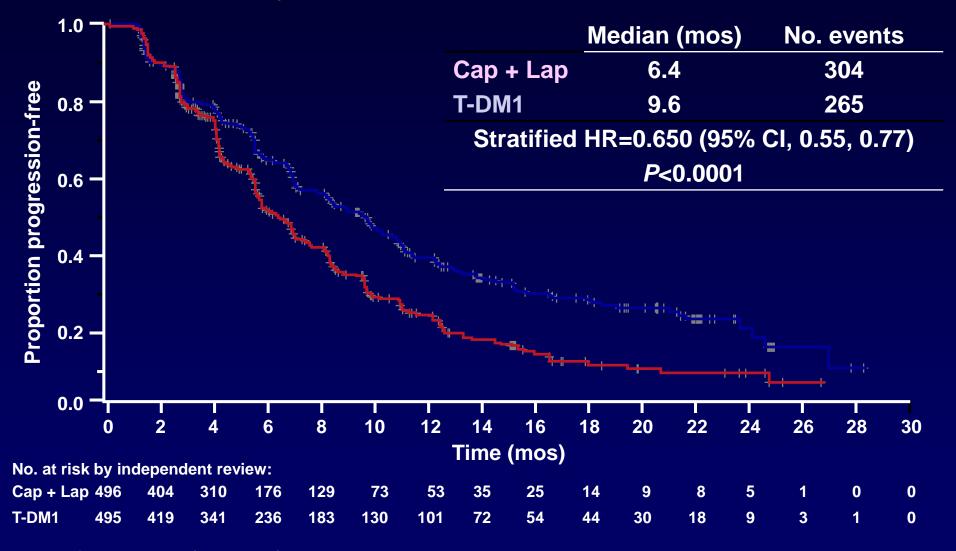
TCa = 6 cycles of docetaxel and carboplatin

*All site, study and sponsor personnel will be blinded as to treatment assignment

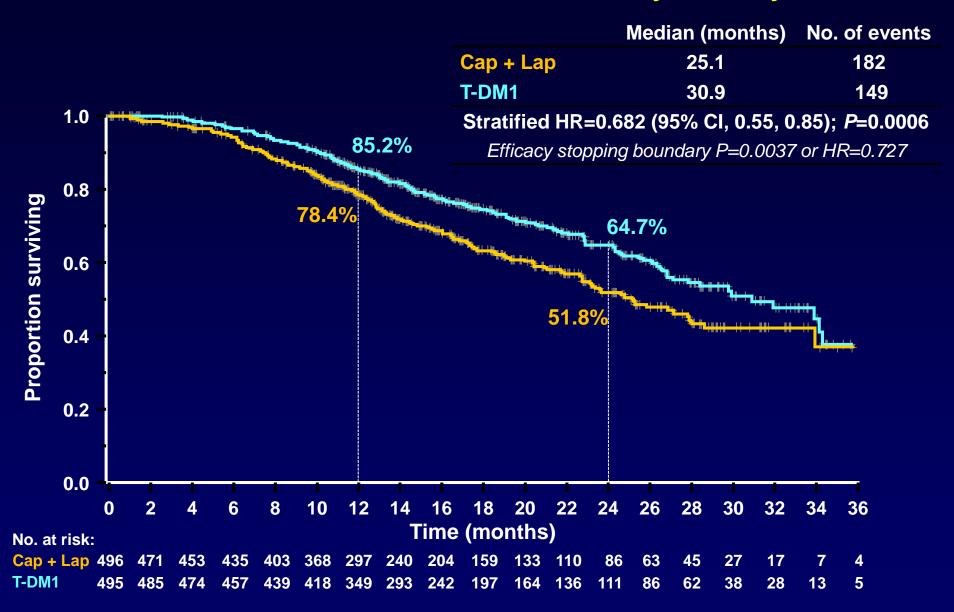
T-DM1 selectively delivers DM1 to HER2-positive tumor cells


- Targeted intracellular delivery of a potent antimicrotubule agent, DM1
- Spares normal tissue from toxicity of free Divis to the HER2 protein on cancer cells
- Trastuzumab-like activity by biHER2 to HER2

EMILIA Study Design


HER2+ (central) LABC or MBC (N=980)

- Prior taxane and trastuzumab
- Progression on metastatic tx or within 6 mos of adjuvant tx


- Stratification factors: World region, number of prior chemo regimens for MBC or unresectable LABC, presence of visceral disease
- Primary end points: PFS by independent review, OS, and safety
- **Key secondary end points:** PFS by investigator, ORR, duration of response, time to symptom progression
- Statistical considerations: Hierarchical statistical analysis was performed in pre-specified sequential order: PFS by independent review → OS → secondary end points

Progression-Free Survival by Independent Review

Unstratified HR=0.66 (*P*<0.0001). Median follow-up, mos (range): Cap + Lap, 12.4 (0–35); T-DM1, 12.9 (0–34)

Overall Survival: Confirmatory Analysis

Data cut-off July 31, 2012; Unstratified HR=0.70 (*P*=0.0012).

Overview of Adverse Events

	Cap + Lap (n=488)	T-DM1 (n=490)
All-grade AE, n (%)	477 (97.7)	470 (95.9)
Grade ≥3 AE, n (%)	278 (57.0)	200 (40.8)
AEs leading to treatment discontinuation (for any study drug), n (%)	52 (10.7)	29 (5.9)
AEs leading to death on treatment, n (%) ^a	5 (1.0)	1 (0.2)
LVEF <50% and ≥15-point decrease from baseline, % ^b	7 (1.6)	8 (1.7)

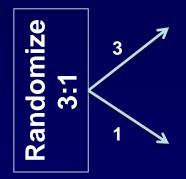
^aCap + Lap: CAD, multiorgan failure, coma, hydrocephalus, ARDS;

- Cap and Lap: More grade 3 diarrhea (21 vs 1.6%), hand foot syndrome (16 vs 0%)
- TDM1: More transaminiitis (4 vs 1%), grade 3/4 thrombocytopenia (13 vs 0%)

^aT-DM1: metabolic encephalopathy.

bEvaluable pts: 445 (Cap + Lap); 481 (T-DM1).

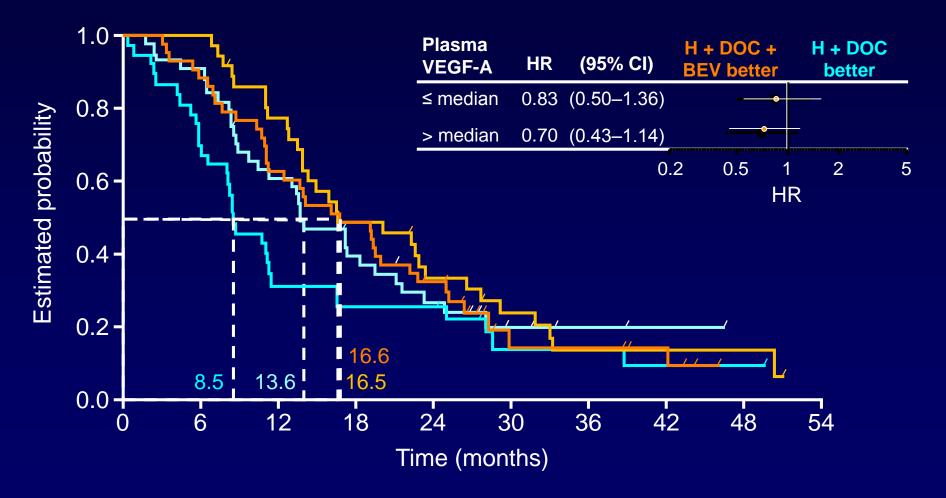
Emilia and Ongoing Trials


- T-DM1 superior to cap/lap
 - PFS, OS, response, safety
 - Will clearly be a new standard in this setting
 - Approval expected towards the end of 2012/early 2013
- Marianne (n=1092, untreated HER2+ MBC)
 - Three arms
 - Trastuzumab + taxane
 - TDM1 + pertuzumab
 - TDM1 plus placebo
- Th3RESA (n=795)
 - Prior trastuzumab/lapatinib/anthra/taxane/cape
 - 2:1 randomization to TDM1 v TPC

Trials in Early Stage Disease

- Post-neoadjuvant cooperative group
- Neoadjuvant company sponsored
- Adjuvant small tumors: ATTEMPT Trial
 - Tolaney PI (DFCI)

Stage I BC HER2+ N=500


Trastuzumab emtansine q 3 weeks x 17 N=375

Paclitaxel + Trastuzumab weekly x 12 →
Trastuzumab every 3 weeks x 13
N=125


What About Bevacizumab (Avastin)?

AVEREL Investigator-Assessed PFS According to Baseline Plasma VEGF-A

```
    H + DOC low VEGF-A (n=45)
    H + DOC + BEV low VEGF-A (n=36)
    H + DOC + BEV high VEGF-A (n=43)
```

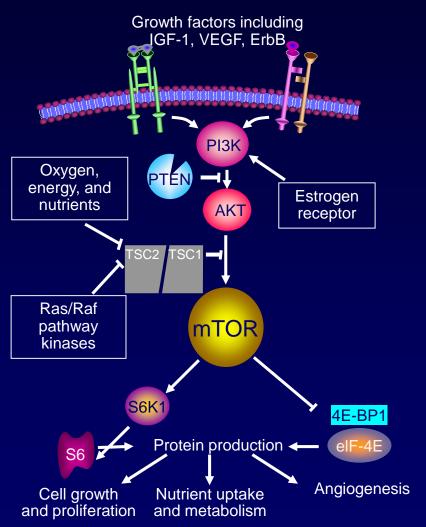

Confirmatory Study Schema: MERIDIAN

Co-Primary Endpoints: PFS (All Patients) , PFS (VEGF high subset)

Secondary Endpoints: OS; ORR; Symptoms/QoL; Safety

The Problem in ER+ Tumors is Endocrine Therapy Resistance

- About 50% of hormone receptor-positive breast cancers are de novo resistant to endocrine therapy
- Almost all patients with advanced disease will develop acquired resistance to endocrine therapies
- The mechanisms of de novo and acquired resistance are likely similar, but are not completely understood
- Changing patterns of adjuvant therapy have decreased efficacy and reduced time to progession in the metastatic setting
- Is there a way to reverse hormone resistance in HER2 normal disease?


A Phase III Randomized Trial of Anastrozole versus Anastrozole and Fulvestrant as First-Line Therapy for MBC. SWOG S0226: Efficacy (Intent-to-Treat)

	Anastrozole (n = 345)	Anastrozole + fulvestrant (n = 349)	Hazard ratio	<i>p</i> -value
Median PFS	13.5 mos	15.0 mos	0.8	0.007
Median OS	41.3 mos	47.7 mos	0.81	0.049
Grade ≥3 AE	12.7%	14.5%*		NS

No prior adjuvant tamoxifen (n = 414)

	(n = 208)	(n = 206)		
Median PFS	12.6 mos	17 mos	0.74	0.0055
Median OS	39.7 mos	47.7 mos	0.74	0.0362

The PI3K/AKT/mTOR Pathway

- mTOR (mammalian target of rapamycin) signaling plays a key role in
 - Cell growth
 - Cell proliferation
 - Regulation of
 - Apoptosis
 - > Angiogenesis
 - > Lymphocytes

^{1.} Bjornsti MA, et al. Nat Rev Cancer. 2004;34(5):335-348; 2. Crespo JL, et al. Microbiol Mol Biol Rev. 2002;66(4):579-595 Homeostasis
3. Huang S, et al. Cancer Biol Ther. 2003;2(3):222-232; 4. Mita MM, et al. Clin Breast Cancer. 2003;4(2):126-137;

^{5.} Wullschleger S, et al. Cell. 2006;124(3):471-484; 6. Johnston SR. Clin Cancer Res. 2005;11(2 Pt 2):889S-899S.

TAMRAD (Phase II): Tamoxifen ± Everolimus in Advanced BC

 111 postmenopausal women with ER+ advanced BC previously treated with an AI were randomized in a phase II trial

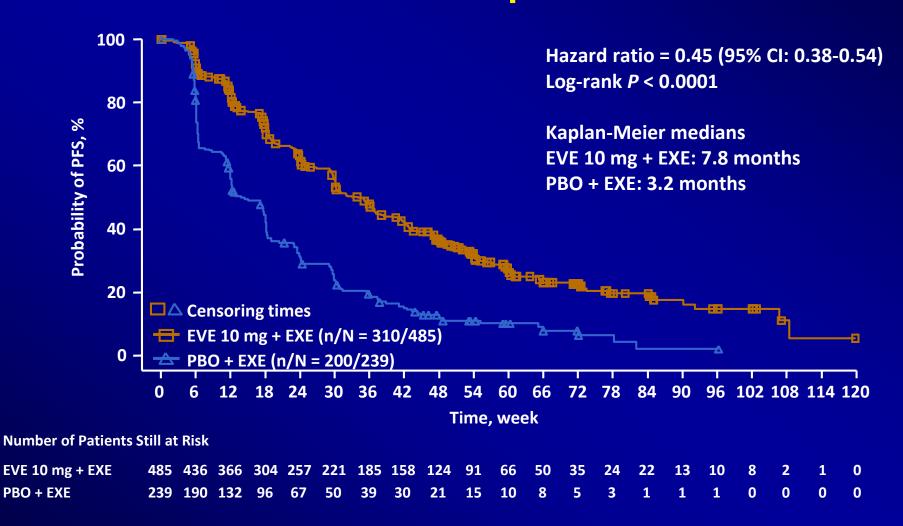
AI = aromatase inhibitor; BC = breast cancer; ER+ = estrogen receptor-positive; EVE = everolimus; TAM = tamoxifen. Bourgier C et al. ECCO/ESMO 2011 (Abstract #5005)

Bolero-2: Phase III Trial of Exemestane +/- Everolimus

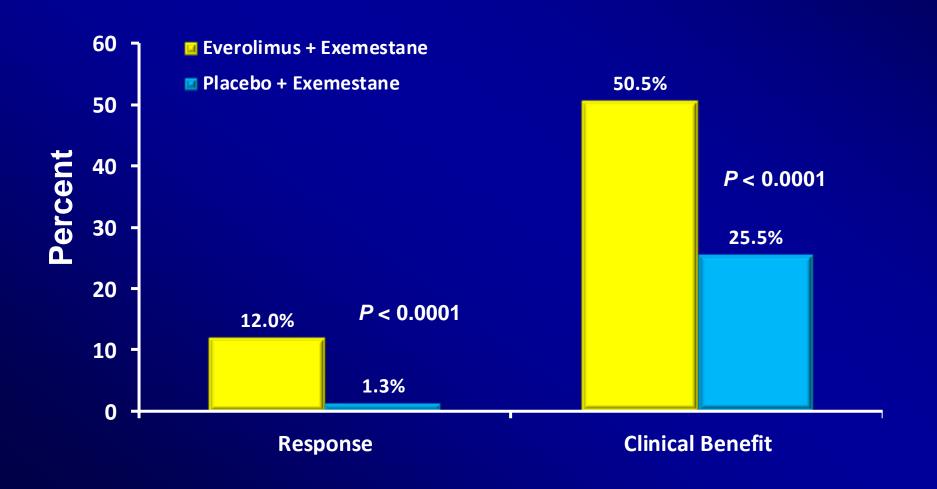
- 724 PM women with ER+ MBC
 - Progression on letrozole or anastrozole
 - > Up to two prior hormone agents
 - > 84% sensitive to hormone therapy

R

2:1


N = 724

- Postmenopausal ER+
- Unresectable locally advanced or metastatic BC
- Recurrence or progression after letrozole or anastrozole


EVE 10 mg daily + EXE 25 mg daily (n = 485)

Placebo + EXE 25 mg daily (n = 239)

PFS Based on Local Assessment at 18-month Follow-Up

BOLERO-2 (18 mo f/up): Response & Clinical Benefit

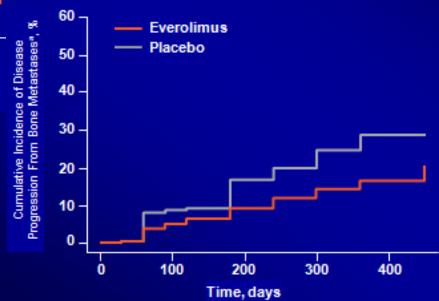
BOLERO-2 (18 mo f/up): Most Common Adverse Events

	Everolimus + Exemestane (n = 482), %			Placebo + Exemestane (n = 238), %		
	All Grades	Grade 3	Grade 4	All Grades	Grade 3	Grade 4
Stomatitis	59	8	0	11	<1	0
Rash	39	1	0	6	0	0
Fatigue	36	4	<1	27	1	0
Diarrhea	33	2	<1	19	<1	0
Appetite decreased	30	1	0	12	<1	0
Nausea	29	<1	<1	28	1	0
Weight decreased	25	1	0	6	0	0
Cough	25	<1	0	12	0	0

EVE → Bone Turnover Marker Levels at 6 and 12 Weeks (Overall Population)

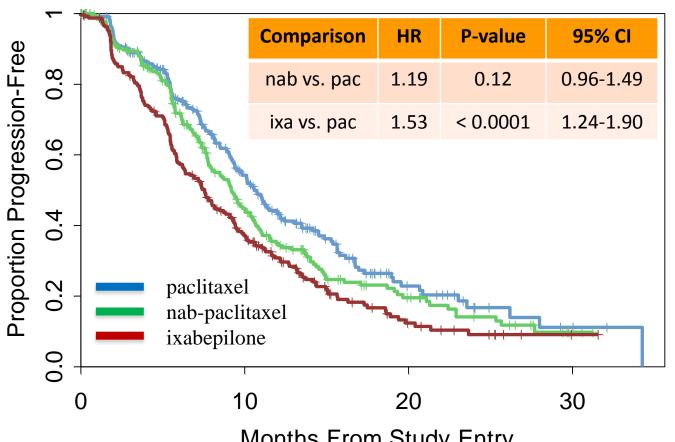
Bone metastases at BL^a: 76% versus 77% Bisphosphonate use at BL^a. 44% versus 54%

Abbreviations: BL, baseline; BSAP, bone-specific alkaline phosphatase; CTX, C-terminal cross-linking telopeptide of type I collagen; EVE, everolimus; EXE, exemestane; PBO, placebo; P1NP, amino-terminal propeptide of type I collagen.


Data from full analysis set.

^a Proportions of patients with bone metastases or bisphosphonate use reflect the status at study entry among patients with baseline bone marker assessments.

Everolimus Decreases Disease Progression in Bone Overall Population (N=724)


Patients with Bone Metastases at Baseline (N=554)

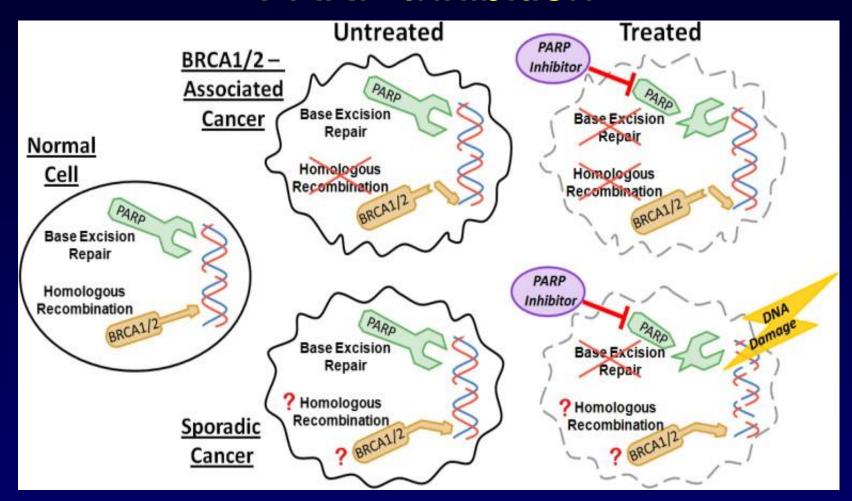
New Chemotherapy

- Eribulin approved for later during the course of advanced cancer
- CALGB 40502
 - Compared Taxol (paclitaxel) to Ixabepilone to Abraxane (nab-paclitaxel as treatment for metastatic disease.
 - More toxicity and less or similar efficacy compared to arms 2 and 3

CALGB 40502 Progression-Free Survival By Treatment Arm

Months From Study Entry

Agent	N	Median PFS
paclitaxel	283	10.6
nab-Paclitaxel	271	9.2
ixabepilone	245	7.6


Summary and New Directions

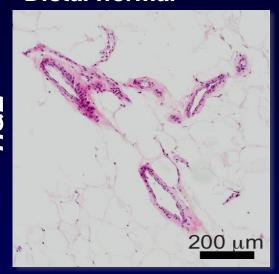
- HER2 positive disease
 - Pertuzumab a new standard of care for advanced HER2+ breast cancer
 - > TDM1 superior to lapatinib and capecitabine
 - Other combinations (MTOR, PIK3CA, etc)
- ER+
 - MTOR inhibition in the second-line setting
 - > A new standard FDA approved 7.2012
 - Move to earlier stage setting for higher risk disease
 - Explosion of new agents targeting this pathway in clinical trials
 - Combined inhibitors
- Critical to find markers that predict response to specific treatments

What Does the Future Hold?

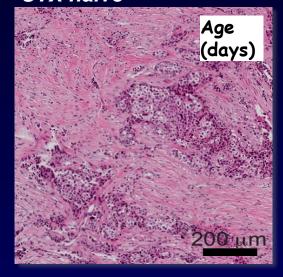
- Genomic testing
 - Looking at the DNA of a tumor (or in normal cells) for mutations or deletions
- Gene expression testing
 - Looks at RNA for specific genes
- Recent data
 - Analysis of breast cancer through the Cancer Genome Atlas Network
 - Identified 4 main breast cancer classes
 - > Identified some of the most common mutations
- What does this mean today?
 - Studies such as these help to identify potential targets for individualized cancer therapy
 - Given complexity of tumor alterations, combinations of therapies are likely to be most effective approach

PARP Inhibition

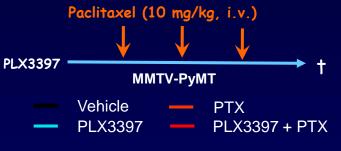
- Novel mechanism inhibition of DNA damage repair
- Efficacy in BRCA-associated cancer

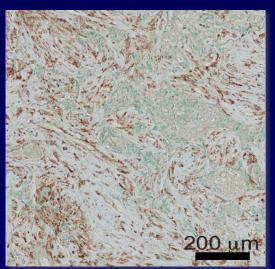

PARP Inhibitors in Development

Agent	Company	Route	Current Trials
Rucaparib	Clovis	IV/Oral	BRCA+, post-neoadjuvant TNBC +cisplatin
Olaparib	AstraZeneca	Oral	BRCA+
Veliparib	Abbott	Oral	BRCA+, TNBC + paclit/carbo
Iniparib BSI-201	BiPar/Sanofi-Aventis	IV	Dose escalation
LT673 (2011	Biomarin	Oral	-
INO-1001	Inotek	IV	-
MK4827	Merck	Oral	-
CEP-9722	Cephalon	Oral	-
E7016	Eisai	Oral	-

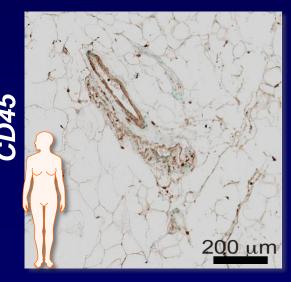

Plummer R *BCR* 2011 vol. 13 (4) pp. 218. with edits

Leukocytes in Breast Cancer: Targets for Therapy?

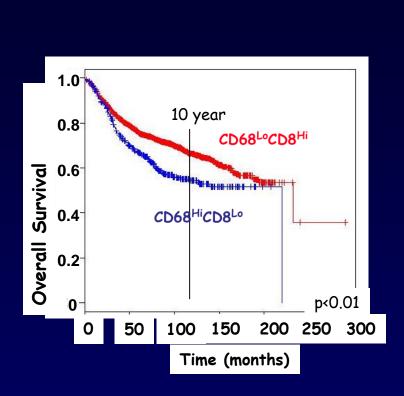

Distal normal



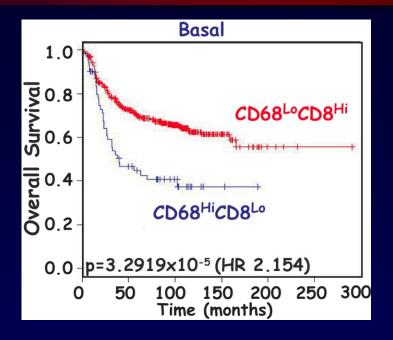
Inv. Ductal Carcinoma CTX naive



Increased macrophage presence correlates with increased vessel density & decreased survival (Tsutsui et al., 2005; Bingle et al., 2002, Campbell et al, 2010)



9000 6000 3000 85 90 95 100 Age (days)



Ruffell et al., PNAS (2011)

CD68/CD8 mRNA Ratio Correlates with OS

Gene expression from 22 data sets >4000 Patients

DeNardo et al., Cancer Discovery (2011)

Phase 1b Study: all BC

PLX3397 oral daily dosing Eribulin: 1.4 mg/m² iv, day 1 and 8 Each cycle of treatment lasts 21 days

Komen Promise Grant:
Coussens, Rugo, Hwang,
Samson
Collaborators: Blackwell
(Duke), Mayer (Vanderbilt)

First Cohort = 600 mg/day 3-6 patients

Second Cohort = 800 mg/day 3-6 patients

Third Cohort = 1000 mg/day 3-6 patients

Phase II Primary
Endpoint:
PFS at 12 weeks

Biopsy for immune

Phase II Study: Metastatic TNBC Lead in period of 5-7d with PLX3397 at MTD oral daily dosing (day -7/5 to day 0)

Starting Day 1

Add Eribulin 1.4 mg/m² iv day 1 and 8 Each cycle of treatment lasts 21 days

PI: Hope Rugo M.D., UCSF

profiling

Clinical Trials!

Consensus Building: ABC1

- 30 International breast cancer experts 11.2011 organized by Fatima Cardoso
- Q2: From onset of diagnosis of MetaBC, patients should be offered personalised appropriate psychosocial, supportive and symptomrelated interventions as a routine part of their care
 - > 100% vote yes
 - More next year!

Advanced Breast Cancer

7-9 November 2013 ● Lisbon, Portugal Second Consensus Conference

SAVE THE DATE

RECEIVE UPDATES AT: www.ABC-lisbon.org

Chairs:

F. Cardoso, PT L. Norton, US E. P. Winer, US A. Costa, IT/CH

dedicated media partner

